4,017 research outputs found

    When and where do you want to hide? Recommendation of location privacy preferences with local differential privacy

    Full text link
    In recent years, it has become easy to obtain location information quite precisely. However, the acquisition of such information has risks such as individual identification and leakage of sensitive information, so it is necessary to protect the privacy of location information. For this purpose, people should know their location privacy preferences, that is, whether or not he/she can release location information at each place and time. However, it is not easy for each user to make such decisions and it is troublesome to set the privacy preference at each time. Therefore, we propose a method to recommend location privacy preferences for decision making. Comparing to existing method, our method can improve the accuracy of recommendation by using matrix factorization and preserve privacy strictly by local differential privacy, whereas the existing method does not achieve formal privacy guarantee. In addition, we found the best granularity of a location privacy preference, that is, how to express the information in location privacy protection. To evaluate and verify the utility of our method, we have integrated two existing datasets to create a rich information in term of user number. From the results of the evaluation using this dataset, we confirmed that our method can predict location privacy preferences accurately and that it provides a suitable method to define the location privacy preference

    Location Privacy in Spatial Crowdsourcing

    Full text link
    Spatial crowdsourcing (SC) is a new platform that engages individuals in collecting and analyzing environmental, social and other spatiotemporal information. With SC, requesters outsource their spatiotemporal tasks to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. This chapter identifies privacy threats toward both workers and requesters during the two main phases of spatial crowdsourcing, tasking and reporting. Tasking is the process of identifying which tasks should be assigned to which workers. This process is handled by a spatial crowdsourcing server (SC-server). The latter phase is reporting, in which workers travel to the tasks' locations, complete the tasks and upload their reports to the SC-server. The challenge is to enable effective and efficient tasking as well as reporting in SC without disclosing the actual locations of workers (at least until they agree to perform a task) and the tasks themselves (at least to workers who are not assigned to those tasks). This chapter aims to provide an overview of the state-of-the-art in protecting users' location privacy in spatial crowdsourcing. We provide a comparative study of a diverse set of solutions in terms of task publishing modes (push vs. pull), problem focuses (tasking and reporting), threats (server, requester and worker), and underlying technical approaches (from pseudonymity, cloaking, and perturbation to exchange-based and encryption-based techniques). The strengths and drawbacks of the techniques are highlighted, leading to a discussion of open problems and future work

    On the Complexity of tt-Closeness Anonymization and Related Problems

    Full text link
    An important issue in releasing individual data is to protect the sensitive information from being leaked and maliciously utilized. Famous privacy preserving principles that aim to ensure both data privacy and data integrity, such as kk-anonymity and ll-diversity, have been extensively studied both theoretically and empirically. Nonetheless, these widely-adopted principles are still insufficient to prevent attribute disclosure if the attacker has partial knowledge about the overall sensitive data distribution. The tt-closeness principle has been proposed to fix this, which also has the benefit of supporting numerical sensitive attributes. However, in contrast to kk-anonymity and ll-diversity, the theoretical aspect of tt-closeness has not been well investigated. We initiate the first systematic theoretical study on the tt-closeness principle under the commonly-used attribute suppression model. We prove that for every constant tt such that 0ā‰¤t<10\leq t<1, it is NP-hard to find an optimal tt-closeness generalization of a given table. The proof consists of several reductions each of which works for different values of tt, which together cover the full range. To complement this negative result, we also provide exact and fixed-parameter algorithms. Finally, we answer some open questions regarding the complexity of kk-anonymity and ll-diversity left in the literature.Comment: An extended abstract to appear in DASFAA 201

    Book Reviews

    Get PDF

    Ik2/TBK1 and Hook/Dynein, an adaptor complex for early endosome transport, are genetic modifiers of FTD-associated mutant CHMP2B toxicity in Drosophila

    Get PDF
    Mutations in CHMP2B, encoding a protein in the endosomal sorting complexes required for transport (ESCRT) machinery, causes frontotemporal dementia linked to chromosome 3 (FTD3). FTD, the second most common form of pre-senile dementia, can also be caused by genetic mutations in other genes, including TANK-binding kinase 1 (TBK1). How FTD-causing disease genes interact is largely unknown. We found that partial loss function of Ik2, the fly homologue of TBK1 also known as I-kappaB kinase Īµ (IKKĪµ), enhanced the toxicity of mutant CHMP2B in the fly eye and that Ik2 overexpression suppressed the effect of mutant CHMP2B in neurons. Partial loss of function of Spn-F, a downstream phosphorylation target of Ik2, greatly enhanced the mutant CHMP2B phenotype. An interactome analysis to understand cellular processes regulated by Spn-F identified a network of interacting proteins including Spn-F, Ik2, dynein light chain, and Hook, an adaptor protein in early endosome transport. Partial loss of function of dynein light chain or Hook also enhanced mutant CHMP2B toxicity. These findings identify several evolutionarily conserved genes, including ik2/TBK1, cut up (encoding dynein light chain) and hook, as genetic modifiers of FTD3-associated mutant CHMP2B toxicity and implicate early endosome transport as a potential contributing pathway in FTD

    Application of activated barrier hopping theory to viscoplastic modeling of glassy polymers

    Get PDF
    YesAn established statistical mechanical theory of amorphous polymer deformation has been incorporated as a plastic mechanism into a constitutive model and applied to a range of polymer mechanical deformations. The temperature and rate dependence of the tensile yield of PVC, as reported in early studies, has been modeled to high levels of accuracy. Tensile experiments on PET reported here are analyzed similarly and good accuracy is also achieved. The frequently observed increase in the gradient of the plot of yield stress against logarithm of strain rate is an inherent feature of the constitutive model. The form of temperature dependence of the yield that is predicted by the model is found to give an accurate representation. The constitutive model is developed in two-dimensional form and implemented as a user-defined subroutine in the finite element package ABAQUS. This analysis is applied to the tensile experiments on PET, in some of which strain is localized in the form of shear bands and necks. These deformations are modeled with partial success, though adiabatic heating of the instability causes inaccuracies for this isothermal implementation of the model. The plastic mechanism has advantages over the Eyring process, is equally tractable,and presents no particular difficulties in implementation with finite elements.F. Boutenel acknowledges an Erasmus Programme Scholarshi

    Watching the Smoke Rise Up: Thermal Efficiency, Pollutant Emissions and Global Warming Impact of Three Biomass Cookstoves in Ghana

    Get PDF
    In Ghana, about 73% of households rely on solid fuels for cooking. Over 13,000 annual deaths are attributed to exposure to indoor air pollution from inefficient combustion. In this study, assessment of thermal efficiency, emissions, and total global warming impact of three cookstoves commonly used in Ghana was completed using the International Workshop Agreement (IWA) Water Boiling Test (WBT) protocol. Statistical averages of three replicate tests for each cookstove were computed. Thermal efficiency results were: wood-burning cookstove: 12.2 Ā± 5.00% (Tier 0); coalpot charcoal stove: 23.3 Ā± 0.73% (Tier 1ā€“2); and Gyapa charcoal cookstove: 30.00 Ā± 4.63% (Tier 2ā€“3). The wood-burning cookstove emitted more CO, CO2, and PM2.5 than the coalpot charcoal stove and Gyapa charcoal cookstove. The emission factor (EF) for PM2.5 and the emission rate for the wood-burning cookstove were over four times higher than the coalpot charcoal stove and Gyapa charcoal cookstove. To complete the WBT, the study results showed that, by using the Gyapa charcoal cookstove instead of the wood-burning cookstove, the global warming impact could be potentially reduced by approximately 75% and using the Gyapa charcoal cookstove instead of the coalpot charcoal cookstove by 50%. We conclude that there is the need for awareness, policy, and incentives to enable end-users to switch to, and adopt, Gyapa charcoal cookstoves for increased efficiency and reduced emissions/global warming impact
    • ā€¦
    corecore